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CHAPTER 12

Random-Effects Model

Introduction
The true effect sizes
Impact of sampling error
Performing a random-effects meta-analysis

INTRODUCTION

In this chapter we introduce the random-effects model. We discuss the assumptions
of this model, and show how these are reflected in the formulas used to compute a
summary effect, and in the meaning of the summary effect.

THE TRUE EFFECT SIZES

The fixed-effect model, discussed above, starts with the assumption that the true effect
size is the same in all studies. However, in many systematic reviews this assumption
is implausible. When we decide to incorporate a group of studies in a meta-analysis,
we assume that the studies have enough in common that it makes sense to synthesize
the information, but there is generally no reason to assume that they are identical in
the sense that the true effect size is exactly the same in all the studies.

For example, suppose that we are working with studies that compare the proportion
of patients developing a disease in two groups (vaccinated versus a placebo). If the
treatment works we would expect the effect size (say, the risk ratio) to be similar but
not identical across studies. The effect size might be higher (or lower) when the partic-
ipants are older, or more educated, or healthier than others, or when a more intensive
variant of an intervention is used, and so on. Because studies will differ in the mixes of
participants and in the implementations of interventions, among other reasons, there
may be different effect sizes underlying different studies.

Or, suppose that we are working with studies that assess the impact of an educational
intervention. The magnitude of the impact might vary depending on the other resources

Introduction to Meta-Analysis, Second Edition.
Michael Borenstein, Larry V. Hedges, Julian P.T. Higgins, and Hannah R. Rothstein.
© 2021 John Wiley & Sons Ltd. Published 2021 by John Wiley & Sons Ltd.



�

� �

�

66 Fixed-Effect Versus Random-Effects Models

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
µ

Figure 12.1 Random-effects model – distribution of the true effects.

available to the children, the class size, the age, and other factors, which are likely to
vary from study to study.

We might not have assessed these covariates in each study. Indeed, we might not
even know what covariates actually are related to the size of the effect. Nevertheless,
logic dictates that such factors do exist and will lead to variations in the magnitude of
the effect.

One way to address this variation across studies is to perform a random-effects
meta-analysis. In a random-effects meta-analysis we usually assume that the true
effects are normally distributed. For example, in Figure 12.1 the mean of all true effect
sizes is 0.60 but the individual effect sizes are distributed about this mean, as indicated
by the normal curve. The width of the curve suggests that most of the true effects fall
in the range of 0.50 to 0.70.

IMPACT OF SAMPLING ERROR

Suppose that our meta-analysis includes three studies drawn from the distribution of
studies depicted by the normal curve, and that the true effects (denoted 𝜃1, 𝜃2, and 𝜃3)
in these studies happen to be 0.50, 0.55 and 0.65 (see Figure 12.2).

If each study had an infinite sample size the sampling error would be zero and the
observed effect for each study would be the same as the true effect for that study.
If we were to plot the observed effects rather than the true effects, the observed effects
would exactly coincide with the true effects.
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Figure 12.2 Random-effects model – true effects.
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Figure 12.3 Random-effects model – true and observed effect in one study.

Of course, the sample size in any study is not infinite and therefore the sampling
error is not zero. If the true effect size for a study is 𝜃i, then the observed effect for
that study will be less than or greater than 𝜃i because of sampling error. For example,
consider Study 3 in Figure 12.2. This study is the subject of Figure 12.3, where we
consider the factors that control the observed effect. The true effect for Study 3 is 0.50
but the sampling error for this study is –0.10, and the observed effect for this study
is 0.40.

This figure also highlights the fact that the distance between the overall mean and
the observed effect in any given study consists of two distinct parts: true variation in
effect sizes (𝜁 i) and sampling error (εi). In Study 3 the total distance from 𝜇 to 𝜃3

is – 0.20. The distance from 𝜇 to 𝜃3 (0.60 to 0.50) reflects the fact that the true effect
size actually varies from one study to the next, while the distance from 𝜃3 to Y3 (0.5
to 0.4) is sampling error.

More generally, the observed effect Yi for any study is given by the grand mean,
the deviation of the study’s true effect from the grand mean, and the deviation of the
study’s observed effect from the study’s true effect. That is,

Yi = 𝜇 + 𝜁i + εi (12.1)

Therefore, to predict how far the observed effect Yi, is likely to fall from 𝜇 in any given
study we need to consider both the variance of 𝜁 i, and the variance of 𝜀i

The distance from 𝜇 (the triangle) to each 𝜃i (the circles) depends on the standard
deviation of the distribution of the true effects across studies, called 𝜏 (tau) (or 𝜏2 for
its variance). The same value of 𝜏2 applies to all studies in the meta-analysis, and in
Figure 12.4 is represented by the normal curve at the bottom, which extends roughly
from 0.50 to 0.70.

The distance from 𝜃i to Yi, depends on the sampling distribution of the sample effects
about 𝜃i. This depends on the variance of the observed effect size from each study, VYi

,
and so will vary from one study to the next. In Figure 12.4 the curve for Study 1 is
relatively wide while the curve for Study 2 is relatively narrow.
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Figure 12.4 Random-effects model – between-study and within-study variance.

PERFORMING A RANDOM-EFFECTS META-ANALYSIS

In an actual meta-analysis, of course, rather than start with the population effect and
make projections about the observed effects, we start with the observed effects and
try to estimate the population effect. In other words our goal is to use the collection
of Yi to estimate the overall mean, 𝜇. In order to obtain the most precise estimate of
the overall mean (to minimize the variance) we compute a weighted mean, where the
weight assigned to each study is the inverse of that study’s variance.

To compute a study’s variance under the random-effects model, we need to know
both the within-study variance and 𝜏2, since the study’s total variance is the sum of
these two values. Formulas for computing the within-study variance were presented in
Part 3. A method for estimating the between-studies variance is given here so that we
can proceed with the worked example, but a full discussion of this method is deferred
to Part 4, where we shall pursue the issue of heterogeneity in some detail.

Estimating tau-squared

The parameter 𝜏2 (tau-squared) is the between-studies variance (the variance of the
effect size parameters across the population of studies). In other words, if we somehow
knew the true effect size for each study, and computed the variance of these effect
sizes (across an infinite number of studies), this variance would be 𝜏2. One method for
estimating 𝜏2 is the method of moments (or the DerSimonian and Laird) method, as
follows. We compute

T2 =
Q − df

C
, (12.2)
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where

Q =
k∑

i=1

WiY
2
i −

(
k∑

i=1
WiYi

)2

k∑
i=1

Wi

, (12.3)

df = k − 1, (12.4)

where k is the number of studies, and

C =
∑

Wi −
∑

W2
i∑

Wi

. (12.5)

Estimating the mean effect size

In the fixed-effect analysis each study was weighted by the inverse of its variance.
In the random-effects analysis, too, each study will be weighted by the inverse of its
variance. The difference is that the variance now includes the original (within-studies)
variance plus the estimate of the between-studies variance, 𝜏2. In keeping with the
book’s convention, we use 𝜏2 to refer to the parameter and T2 to refer to the sample
estimate of that parameter.

To highlight the parallel between the formulas here (random effects) and those in
the previous chapter (fixed effect) we use the same notations but add an asterisk (*)
to represent the random-effects version. Under the random-effects model the weight
assigned to each study is

W∗
i = 1

V∗
Yi

, (12.6)

where V∗
Yi

is the within-study variance for study i plus the between-studies variance,
T2. That is,

V∗
Yi
= VYi

+ T2.

The weighted mean, M*, is then computed as

M∗ =

k∑
i=1

W∗
i Yi

k∑
i=1

W∗
i

. (12.7)

that is, the sum of the products (effect size multiplied by weight) divided by the sum
of the weights.

The variance of the summary effect is estimated as the reciprocal of the sum of the
weights, or

VM∗ = 1
k∑

i=1
W∗

i

, (12.8)
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and the estimated standard error of the summary effect is then the square root of the
variance,

SEM∗ =
√

VM∗ . (12.9)

The 95% lower and upper limits for the summary effect would be computed as

LLM∗ = M∗ − 1.96 × SEM∗ , (12.10)

and
ULM∗ = M∗ + 1.96 × SEM∗ . (12.11)

Finally, a Z-value to test the null hypothesis that the mean effect 𝜇 is zero could be
computed using

Z∗ = M∗

SEM∗
. (12.12)

For a one-tailed test the p-value is given by

p∗ = 1 − Φ(±|Z∗|), (12.13)

where we choose ‘+’ if the difference is in the expected direction or ‘–’ otherwise, and
for a two-tailed test by

p∗ = 2[1 − (Φ(|Z∗|))], (12.14)

where Φ(Z*) is the standard normal cumulative distribution. This function is tabled
in many introductory statistics books, and is implemented in Excel as the function
= NORMSDIST(Z*).

Illustrative example
As before, we suggest that you turn to one of the worked examples in the next chapter
before proceeding with this discussion.

SUMMARY POINTS

• Under the random-effects model, the true effects in the studies are assumed to
have been sampled from a distribution of true effects.

• The summary effect is our estimate of the mean of all relevant true effects, and
the null hypothesis is that the mean of these effects is 0.0 (equivalent to a ratio
of 1.0 for ratio measures).

• Since our goal is to estimate the mean of the distribution, we need to take account
of two sources of variance. First, there is within-study error in estimating the
effect in each study. Second (even if we knew the true mean for each of our
studies), there is variation in the true effects across studies. Study weights are
assigned with the goal of minimizing both sources of variance.


