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CHAPTER 19

An Intuitive Look at Heterogeneity
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INTRODUCTION

In previous chapters, we explained the meaning of the various indices employed to
quantify heterogeneity. While many researchers understand the distinction between
these indices in the abstract, relatively few actually put this knowledge into practice.
Our goal in this chapter is to provide practical advice about how to think about het-
erogeneity.

The potential utility of an intervention depends not only on the mean effect size,
but also on the dispersion of effects about that mean. We need to know if the inter-
vention has essentially the same impact in all populations; or has a trivial impact
in some populations and a large impact in others; or if it is harmful in some pop-
ulations and helpful in others. When researchers ask about heterogeneity, they are
asking which of these descriptions applies. However, the statistics typically reported
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for heterogeneity (Q, T2, I2) do not directly address this question. In this chapter, we
highlight the prediction interval, the statistic that reports the range of true effects. This
statistic provides the information that we need, and that many think is being provided
by the other statistics.

While it is important to report the relevant statistics, it is also imperative to under-
stand the limitations of these statistics. We need a reasonable number of studies to
yield reliable estimates of any statistics related to heterogeneity. This applies to I2 and
T2 as well as to the prediction interval. An estimate of heterogeneity that is based on
a handful of studies (or fewer) is not likely to be reliable.

MOTIVATING EXAMPLE

Ronksley, Brien, Turner, Mukamal, and Ghali (2011) published a meta-analysis in
BMJ that looked at the relationship between alcohol consumption and all-cause mor-
tality. The mean risk ratio was 0.87, which tells us that persons classified as drinkers
had a lower risk of death than those classified as nondrinkers. The confidence inter-
val is 0.83 to 0.91, and the Z-value for a test of the null hypothesis is 5.77 with a
corresponding p-value of <0.001.

On this basis, we conclude that the mortality risk is 13% lower for drinkers, on
average. However, we still need to address heterogeneity. That is, we need to know
if the distribution of effects resembles panel A, B, or C in Figure 19.1. In each panel,
the distribution may be summarized by means of the prediction interval, denoted by
an arrow. The true effect size in 95% of all populations will fall inside that interval.

If the distribution of effects resembles panel A, we might report that the drinkers
have a lower risk of death than nondrinkers in virtually all populations. At one extreme,
there are some populations where the risk of death is 29% lower for drinkers. At the
other extreme, there are a few populations where the risk of death is 5% higher for
drinkers. As such, the relationship between drinking and mortality is relatively modest
but also relatively consistent.

If the distribution of effects resembles panel B, we might report that the drinkers
have a lower risk on average, but there is substantial variation in this relationship.
At one extreme, there are some populations where the risk of death is 41% lower for
drinkers. At the other extreme, there are some populations where the risk of death is
30% higher for drinkers.

Finally, if the distribution of effects resembles panel C, we might report that there
is so much variation in the effect that the mean effect is of little relevance. At one
extreme, there are some populations where the risk of death is 60% lower for drinkers.
At the other extreme, there are some populations where the risk of death is 91% higher
for drinkers.

These interpretations of the numbers are subjective, and others will characterize
the implications of the heterogeneity differently. That discussion is necessary and
welcome. However, to have an informed discussion about the implications of the dis-
persion, we must first know if the distribution resembles panel A, B, or C.
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Figure 19.1 Alcohol use and mortality. Risk ratio < 1 favors drinkers. Three possible distributions of true
effects.

Note that the distribution of effects is assumed to be symmetric in log units.
It appears to be skewed because the plot uses the risk ratio rather than the log risk
ratio on the X-axis.

THE Q-VALUE AND THE p-VALUE DO NOT TELL US HOW MUCH THE EFFECT SIZE
VARIES

The statistics that most papers report for heterogeneity include the Q-value and the
p-value. In the current analysis, the Q-value is 96.85 with 32 degrees of freedom, and
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the p-value for a test of the null hypothesis (that the true effect size is the same in
all studies) is <0.001. Based on these statistics, there is no way of knowing whether
the distribution of effects resembles A, B, or C. The Q-value is the sum of squared
deviations on a standardized scale and is driven by the number of studies and the
extent of dispersion. The same applies to the p-value. Therefore, neither of these can
serve as a surrogate for the amount of dispersion.

THE CONFIDENCE INTERVAL DOES NOT TELL US HOW MUCH THE EFFECT SIZE
VARIES

The forest plot of a meta-analysis typically includes a line with the summary effect size
and its confidence interval, which is sometimes displayed as a diamond. Researchers
sometimes assume that the confidence interval tells us how widely the effect size varies
across studies. It does not. The confidence interval speaks to the precision with which
we have estimated the mean effect size. It says nothing about the dispersion in effects.
See Chapter 17 for a detailed discussion of this point.

THE I2 STATISTIC DOES NOT TELL US HOW MUCH THE EFFECT SIZE VARIES

Many researchers believe that the I2 index tells us how much the effect size varies, but
in fact, it does not. While many readers will find this statement surprising, the proof is
both simple and compelling. In this analysis, I2 was reported as 67%. Based on that,
does the distribution of effects resemble panel A, B, or C? The answer is that we do
not know.

There is a widespread belief that I2 values of less than 25% represent low hetero-
geneity; values near 50% moderate heterogeneity; and values greater than 75% high
heterogeneity. Since the I2 value of 67% falls in the moderate to high interval, some
researchers may expect that the dispersion in this case resembles panel B or C. That
happens to be incorrect, since the dispersion in this case actually resembles panel A.
However, the more important point is that given an I2 value of 67%, the heterogeneity
could resemble panel A, B, C, or an infinite number of other panels. I2 does not tell us
how much the effect size varies. It was never intended for that purpose and cannot pro-
vide that information except in special cases (Borenstein, 2019; Borenstein, 2020; Hig-
gins, Hedges, & Rothstein, 2017; Huedo-Medina, Sanchez-Meca, Marin-Martinez,
& Botella, 2006; Mittlbock & Heinzl, 2006; Rucker, Schwarzer, Carpenter, & Schu-
macher, 2008).

WHAT I2 TELLS US

If I2 does not tell us how much the effect size varies, one might ask what it does tell
us. To explain that, we need to provide some background.

When we discuss a meta-analysis, we need to distinguish between true effects and
observed effects. The true effect size in any study is the effect size that we would
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observe if we could somehow enroll the entire population in the study, so that we
knew the effect size with no error. By contrast, the observed effect size is the effect
size observed in the study’s sample. This serves as an estimate of the true effect size but
invariably underestimates or overestimates the true effect size due to sampling error.

When we perform a meta-analysis, we work with the observed effect size for each
study, but what we really care about is the true effect size for each study. As it happens,
the dispersion of observed effects tends to exceed the dispersion of true effects. To
understand why this is, consider what would happen if we drew ten random samples
from the same population. Since all samples are estimating the same parameter (the
effect size in that one population), the variance in true effects is zero by definition.
Nevertheless, the variance of observed effects will be greater than zero because of
sampling error. In this case,

VOBS = VERR, (19.1)

where VOBS is the variance of observed effects, and VERR is the variance due to sampling
error. The same idea applies when the variance of true effects exceeds zero. In this case,
the variance of observed effects is equal to the variance of true effects plus the error
variance. That is,

VOBS = T2 + VERR, (19.2)

where T2 is the variance of true effects.
For the present discussion, the key point is that we have two distinct distributions.

One is based on the variance of observed effects (which we see in the forest plot).
The other is based on the variance of true effects (which tells us how much the effects
actually vary). And, the variance of the former is greater than the variance of the latter.
It would be useful to have a statistic that gives us the relationship between the two
variances. That statistic is I2, which is defined as

I2 =
(

VTRUE

VOBS

)
× 100 =

(
T2

VOBS

)
× 100 =

(
VTRUE

VTRUE + VERR

)
× 100. (19.3)

In words, I2 tells us what proportion of the observed variance is attributed to the
variance in true effects rather than to sampling error (Borenstein, 2019; Borenstein,
Higgins, Hedges, & Rothstein, 2017; Higgins & Thompson, 2002).

Critically, I2 is a proportion, not an absolute value. To obtain the variance of true
effects (T2), we need to multiply I2 by the variance of observed effects. That is,

T2 = I2 × VOBS. (19.4)

The practical implications of this formula are evident in Figure 19.2. This is based on
the same example as Figure 19.1, but in this case each panel displays two distributions.
The inner curve is the same curve that we saw in Figure 19.1 and reflects the dispersion
of true effects, with an arrow denoting the 95% prediction interval. The outer curve
represents the dispersion of observed effects.

• In panel A, the observed effects all fall within the outer curve, which is relatively
narrow in this case. When we multiply this by I2, we find that the true effects fall in
the relatively narrow interval of 0.71 to 1.05, as indicated by the inner curve.
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Figure 19.2 Alcohol use and mortality. Risk ratio < 1 favors drinkers. Three possible distributions of true
effects (inner) and observed effects (outer).

• In panel B, the observed effects again fall within the outer curve, which is relatively
wide in this case. When we multiply this by I2, we find that the true effects fall in
the relatively wide interval of 0.59 to 1.30, as indicated by the inner curve.

• In panel C, the observed effects again fall within the outer curve, which is even
wider in this case. When we multiply this by I2, we find that the true effects fall in
even wider the interval of 0.40 to 1.91, as indicated by the inner curve.
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THE I2 INDEX VS. THE PREDICTION INTERVAL

If we want to know what proportion of the variance in observed effects is attributed to
variance in true effects, we look at the relationship between the two curves. In all three
panels, the relationship between the inner curve and the outer curve is the same, with
the variance of true effects being 67% as large as the variance of observed effects. In
all three cases, I2 is 67%. This is the domain of I2 – it addresses the ratio of true to
total variance.

By contrast, if we want to know how much the effect size varies, we are asking for
an absolute measure of dispersion. In panel A, the effects fall in the interval of 0.71
to 1.05. In panel B, they fall in the interval of 0.59 to 1.30. In panel C, they fall in
the interval of 0.40 to 1.91. This is the domain of the prediction interval – it addresses
the extent of the dispersion on an absolute scale (Borenstein, 2019, 2020; Borenstein
et al., 2017; IntHout, Ioannidis, Rovers, & Goeman, 2016).

Since I2 is a ratio, the I2 value of 67% could correspond to any of these panels. As
it happens, the observed effects correspond to the outer curve in panel A, and so the
true effects correspond to the inner curve in panel A. Computations are presented at
the end of this chapter.

THE PREDICTION INTERVAL

When we ask about heterogeneity in a meta-analysis, we want to know how much
the effect size varies across studies. As discussed above, the I2 index does not provide
this information. The index that does provide this information is the prediction interval
(Borenstein, 2019; Michael Borenstein et al., 2017; Chiolero, Santschi, Burnand, Platt,
& Paradis, 2012; Graham & Moran, 2012; Guddat, Grouven, Bender, & Skipka, 2012;
Higgins, Thompson, & Spiegelhalter, 2009; Riley, Higgins, & Deeks, 2011).

When we perform a random-effects analysis, we assume that the studies in the anal-
ysis are a random (or at least representative) sample of studies in some universe of
interest, and our goal is to make inferences about that universe. The 95% prediction
interval is the interval that includes the true effect size for 95% of all populations in
that universe.

Figure 19.3 is a forest plot of the studies in the motivating example. The last line
on the plot [A] shows the mean effect size of 0.87 with a confidence interval of 0.83
to 0.91. The confidence interval is an index of precision, and it speaks to the precision
with which we have estimated the mean. In 95% of all analyses, the true mean for the
universe of comparable studies will fall within the confidence interval. The confidence
interval, shown here as a line, is often shown as a diamond. It has the same meaning
in either case.
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Figure 19.3 Alcohol use and mortality (Forest plot). Risk ratio < 1 favors drinkers.

The line immediately below the plot [B] shows the prediction interval of 0.71 to
1.07. The prediction interval is an index of dispersion, and it speaks to the heterogene-
ity of true effects. In some 95% of all comparable populations, the risk ratio will fall
in this interval.

Researchers sometimes confuse the prediction interval with the confidence interval,
but the two address entirely separate issues.

The 95% confidence interval may be estimated using

CI = M ± 1.96(SE), (19.5)

where SE is the standard error of the mean effect size. By contrast, the 95% prediction
interval may be estimated using

PI = M ± 1.96(T), (19.6)

where T is the standard deviation of the effect size.
Both of these formulas are simplified versions of the formulas that we would use in

practice. We use these here to highlight the difference between the confidence interval
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(which is based on the standard error) and the prediction interval (which is based on
the standard deviation).

In practice, one might employ the Knapp–Hartung adjustment when computing the
confidence interval, as discussed in Chapter 26. Similarly, we would always recom-
mend using the formulas discussed in Chapter 17 when computing the prediction
interval. These formulas adjust the width of the interval to account for the fact that
the statistics included in these formulas are estimated with error.

PREDICTION INTERVAL IS CLEAR, CONCISE, AND RELEVANT

The prediction interval is concise and unambiguous. If we report that the risk ratio
varies from 0.71 in some populations to 1.07 in others, the reader understands what
this means. The prediction interval is intuitive because it reports values on the same
scale as the effect size. In the motivating example, the mean effect size is a risk ratio of
0.87 and the prediction interval tells us that in most comparable populations the true
risk ratio will fall between 0.71 and 1.07.

The prediction interval is on a meaningful scale. It tells us not only that the interval is
a specific width, but that it ranges from one specific value to another specific value. As
such, it allows us to distinguish not only between a case where the interval is 20 points
wide from one where it is 40 points wide. It also allows us to distinguish between a
case where those 40 points vary from trivially helpful to moderately helpful (on the
one hand) vs. a case where the effects vary from harmful to helpful (on the other).

Most important, the prediction interval addresses the question that we have in mind
when we ask about heterogeneity. If the analysis addresses the impact of an interven-
tion, the prediction interval provides the information that speaks to the potential utility
of that intervention.

COMPUTING THE PREDICTION INTERVAL

The formula for computing the prediction interval presented above (19.6) was intended
as a conceptual formula. In practice, we need to modify this formula to account for the
fact that we are working with an estimate of the true mean effect size and an estimate
of the standard deviation of effects. Additionally, for some effect size indices we need
to transform the estimates into log units for the computations. The relevant formulas
are given in Chapter 17, and worked examples are presented in Chapter 18.

In practice, one would use a spreadsheet or computer program to compute the pre-
diction interval. Figure 19.4 shows a program which is available on the book’s web-
site (www.Introduction-to-Meta-Analysis.com). The researcher enters the number of
studies in the analysis, the risk ratio, the upper limit of the confidence interval, and
tau-squared. The program generates the corresponding distribution. It also generates
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Alcohol use and all-cause mortality

0.50 0.75 1.00

Risk ratio

The mean effect size is 0.87 with a 95% confidence interval of 0.83 to 0.91
The true effect size in 95% of all comparable populations falls in the interval 0.71 to 1.07

1.25 1.50

Figure 19.4 Alcohol use and mortality (true effects). Risk ratio < 1 favors drinkers.

the caption The true effect size in 95% of all comparable populations falls in the inter-
val 0.71 to 1.07, which is the prediction interval.

The formulas implemented in this program are explained in this volume, and in
(Borenstein et al., 2017; Higgins et al., 2009; Riley et al., 2011). Other approaches
to computing prediction intervals are discussed in Nagashima, Noma, & Furukawa
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(2019); and Wang & Lee (2019). Computational details for this example are presented
at the conclusion of this section.

HOW TO USE I2

While I2 does not tell us how much the effect size varies on an absolute scale, it does
provide other information, as follows.

• If I2 is zero, then all the variance in observed effects is due to sampling error. The
variance in true effects is estimated as zero.

• If we are looking at a forest plot, I2 provides context for understanding that plot. If
I2 is near zero, the variance of true effects is only a small fraction of that suggested
by the plot. As I2 increases, that proportion increases.

• If we are working with a set of meta-analyses where the variance of observed
effects is reasonably consistent, there will be a strong correlation between I2 and
the absolute amount of variance. Within that context, I2 can provide information
about the relative amounts of dispersion across analyses.

• The I2 statistic can be used to compare meta-analyses of the same set of data
analyzed using different effect metrics. For example, raw mean differences and stan-
dardized mean differences will be associated with different amounts of heterogene-
ity, but it is not meaningful to compare values of T2 between the two scales. Because
I2 statistic has a unit-less scale, it is legitimate to compare it between the two
analyses.

• The I2 statistic is useful to statisticians who are evaluating the properties of various
statistics. For example, if someone wanted to run simulations to see how statistical
power is affected by the ratio of true to total variance, they could do so for various
values of I2.

• Sometimes, we do care about the proportion of variance rather than the absolute
amount of variance. For example, if we have various ways of conducting studies
and we want to know which have the smallest amount of sampling error, I2 is the
index that allows us to address this question.

HOW TO EXPLAIN HETEROGENEITY

Virtually all papers that report a meta-analysis include a discussion of heterogeneity
which follows a standard pattern. The researchers report Q, df, and a p-value, I2, and T2.
None of these directly addresses the question that really matters, which is ‘What is the
interval over which the effects vary?’ Ironically, the prediction interval, the one statistic
that does address this question, is rarely reported.

The paragraph that follows is based on the motivating example and can be adapted
for the results section of a paper. The paragraph includes all the statistics that readers
(and journal editors) expect to see, but these are annotated to make it more likely that
they will be interpreted correctly. Critically, the report also includes the prediction
interval.
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HOW MUCH DOES THE EFFECT SIZE VARY ACROSS STUDIES?

The Q-statistic provides a test of the null hypothesis that all studies in the analysis
share a common effect size. If all studies shared the same effect size, the expected
value of Q would be equal to the degrees of freedom (the number of studies minus 1).
The Q-value is 96.851 with 32 degrees of freedom and p < 0.001. We can reject the
null hypothesis that the true effect size is the same in all these studies. The I2 statistic is
67%, which tells us that 67% of the variance in observed effects reflects variance in
true effects rather than sampling error. T2, the variance of true effect sizes, is 0.009
in log units. T, the standard deviation of true effect sizes, is 0.096 in log units. If we
assume that the effects are normally distributed (in log units), we can estimate that the
prediction interval for the risk ratio is 0.71 to 1.07. The true effect size for any single
population will usually fall in this range.

CAVEATS

All heterogeneity statistics will only be reliable if certain assumptions are met. In par-
ticular, we need to have a sufficient number of studies, and these studies must be a
random sample of the intended universe. We also assume that the effects are normally
distributed on the relevant scale. There is no consensus on what would be a sufficient
number of studies to yield reliable estimates, but ten studies would be a useful mini-
mum in most cases. With fewer than ten studies, T2 (which feeds into the prediction
interval) is estimated erratically and may give rise to prediction intervals that are inap-
propriately narrow or unhelpfully wide. While this caveat applies to I2 and T2 as well
as the prediction interval, it is of particular import for the prediction interval since
researchers understand what that interval means and will actually use it in discussing
the utility of an intervention.

CONCLUSION

When we ask about heterogeneity in effects, we intend to ask how much the effect size
varies across studies. We want to know the extent of the variation – Does the effect size
vary over 10 points or 50 points? We also want to know the limits of the variation on
an absolute scale – Is the intervention always helpful, or is it helpful in some cases
and harmful in others?

The I2 index has become the primary index for reporting heterogeneity in a
meta-analysis and is widely interpreted as telling us how much the effect size varies
across studies. However, this interpretation is fundamentally incorrect. The I2 index
is a proportion, not an absolute amount. It tells us what proportion of the variance in
observed effects is attributed to variance in true effects. It does not tell us how much
the effect size varies across studies.

The index that does tell us how much the effect size varies across studies is the
prediction interval. This index is intuitive and concise. It reports the interval using the
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same scale as the effect size itself. It gives us not only the width of the interval but the
limits, so we know if the intervention is consistently helpful, or if it may be harmful
in some cases. This statistic addresses the issue that we care about, and that many
researchers think is being addressed by I2. The inclusion of this interval in reports of
heterogeneity will allow for a more informed discussion of the potential utility of any
intervention and should be made common practice.

FURTHER READING

The original papers on I2 are Higgins and Thompson (2002); Higgins, Thompson,
Deeks, and Altman (2003). For a more detailed discussion of the issues raised in this
section, see Borenstein et al. (2017).

(For related papers, see Borenstein, 2019, 2020; Coory, 2009; Higgins, 2008; Hig-
gins et al., 2009; Huedo-Medina et al., 2006; IntHout et al., 2016; Ioannidis, 2008a;
Riley et al., 2011; Rucker et al., 2008).

SUMMARY POINTS

• When we ask about heterogeneity, we want to know how the effect size varies
across studies. The statistics typically reported for heterogeneity do not provide
this information.

• This information is not provided in a useful format by the Q-value, nor by T2.
There is a widespread belief that the I2 index in a meta-analysis tells us how much
the effect size varies across studies, but this belief is fundamentally incorrect.

• The only statistic that directly reports this information is the prediction inter-
val. The prediction interval tells us how much the effect size varies. It tells us
whether the intervention is consistently helpful, or helpful in some populations
but harmful in others. This is the information that we need to make informed
decisions about the potential utility of the intervention.

THE MEANING OF I2 IN FIGURE 19.2

The purpose of Figure 19.2 is to show how I2 reflects the relationship between the
inner curve (true effects) and the outer curve (observed effects). In this example, I2

is 67%, which tells us that the ratio is the two variances if 0.67. However, it may
not be clear how we see this in the plot. The computations for Panel A in Figure 19.2
are given in Table 19.1. In practice, we would bypass these computations and compute
the prediction interval directly. This section is intended only to explain the relationship
among the indices.

When we are working with risk ratios, data are converted to natural log units and all
computations are performed in this metric. Therefore, most columns in the table are
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Table 19.1 Relationship between observed effects and true effects in Figure 19.2, Panel A.

Log units Risk ratio units

Mean Variance
Standard
deviation Interval Interval

True −0.136154 T2 = 0.009222 T = 0.096031 −0.324375 to 0.052067 0.722979 to 1.053446
Observed −0.136154 S2 = 0.013772 S = 0.117356 −0.366172 to 0.093864 0.693383 to 1.098410

I2 = 66.9596% I = 81.8288%

in these units. After the intervals are computed, they are converted back to risk ratio
units as in the right-most columns.

The I2 index is a ratio of variances,

I2 = T2

S2
= 0.009222

0.013772
= 0.669596 ≈ 67%. (19.7)

To move from the variance of the outer curve to the variance of the inner curve, we
would use

T2 = S2 × I2 = 0.013772 × 0.669596 = 0.009222. (19.8)

On that basis, many researchers expect that the inner curve will be 67% as wide as
the outer curve. In fact, though, the ratio applies to the variance of the two distributions,
which is a squared metric. By contrast, the distributions are in linear units, and so based
on standard deviations rather than variances. Rather than work with the squared metric
(I2), we work with the linear metric (I).

The I index is a ratio of standard deviations,

I = T
S
= 0.096031

0.117356
= 0.818288, (19.9)

or simply
I =

√
I2 =

√
.669596 = 0.818288 ≈ 82%. (19.10)

To move from the standard deviation of the outer curve to the standard deviation of
the inner curve, we would use

T = S × I = 0.117356 × 0.818288 = 0.096031. (19.11)

This is what we see in the plot – the standard deviation of the inner curve is 82% as
large as the standard deviation of the outer curve.

To compute the 95% interval for observed effects we use

OBSLL = M − 1.96(S) = −0.136154 − 1.96(0.117356) = −0.366172 (19.12)

OBSUL = M + 1.96(S) = 0.136154 + 1.96(0.117356) = 0.093864. (19.13)

We then convert these log values into risk ratio units, using

OBSLL = exp(−0.366172) = 0.693383 (19.14)

OBSUL = exp(0.093864) = 1.098410. (19.15)
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To compute the 95% interval for the inner curve at the location of the arrow, we
use the same formula, but substitute the standard deviation of true effects (T) for the
standard deviation of observed effects (S). Concretely

PREDLL = M − 1.96(T) = −0.136154 − 1.96(0.096031) = −0.324375 (19.16)

PREDUL = M + 1.96(T) = −0.136154 + 1.96(0.096031) = 0.052067. (19.17)

We then convert these log values into risk ratio units, using

PREDLL = exp(−0.324375) = 0.722979 (19.18)

PREDUL = exp(0.052067) = 1.053446 (19.19)

The distribution of observed effects is a hypothetical distribution that allows us to
illustrate the meaning of I2. In real life, such a distribution would only exist if the error
variance was identical for all studies, which is never the case.

The formulas used here to compute the prediction interval are only intended for
the purpose of illustrating the relationship between the curves. For that purpose, we
wanted to use a formula that isolates the difference between the distribution of true
effects vs. observed effects. By contrast, to compute the prediction interval in practice,
we would use the formulas presented earlier that use the t distribution rather than the
Z distribution, and that take into account the error variance in estimating the mean.
In this example, the prediction interval based on the correct formulas (0.71 to 1.07)
is only slightly wider than the one based on the naïve formulas (0.72 to 1.05). This
is true in this example because we have a substantial number of studies and a precise
estimate of the mean. However, it would be a mistake to generalize from this example
and assume that we can always use the naïve formulas. Often, the difference between
the naïve formula and the correct formula will be substantial, and so we should always
use the latter.
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