Contents

List of Tables		XV
List of Figures		xix
Acknowledgements		XXV
Preface		xxvii
Preface to the Second Edition		XXXV
Wel	bsite	xxxvii
PAR	RT 1: INTRODUCTION	
1	HOW A META-ANALYSIS WORKS	3
	Introduction	3
	Individual studies	3
	The summary effect	5
	Heterogeneity of effect sizes	6
	Summary points	7
2	WHY PERFORM A META-ANALYSIS	9
	Introduction	9
	The streptokinase meta-analysis	10
	Statistical significance	11
	Clinical importance of the effect	11
	Consistency of effects	12
	Summary points	13
PAR	RT 2: EFFECT SIZE AND PRECISION	
3	OVERVIEW	17
3	Treatment effects and effect sizes	17
	Parameters and estimates	18
		19
	Outline of effect size computations	19
4	EFFECT SIZES BASED ON MEANS	21
	Introduction	21
	Raw (unstandardized) mean difference D	21
	Standardized mean difference, d and g	25
	Response ratios	30
	Summary points	31

vi Contents

5	EFFECT SIZES BASED ON BINARY DATA (2 \times 2 TABLES)	33
	Introduction Diele metical	33
	Risk ratio Odds ratio	33 35
	Risk difference	33 37
	Choosing an effect size index	38
	Summary points	38
	Summary points	30
6	EFFECT SIZES BASED ON CORRELATIONS	39
	Introduction	39
	Computing <i>r</i>	39
	Other approaches	40
	Summary points	41
7	CONVERTING AMONG EFFECT SIZES	43
•	Introduction	43
	Converting from the log odds ratio to d	44
	Converting from d to the log odds ratio	45
	Converting from r to d	45
	Converting from d to r	46
	Summary points	47
8	FACTORS THAT AFFECT PRECISION	49
	Introduction	49
	Factors that affect precision	50
	Sample size	50
	Study design	51
	Summary points	53
9	CONCLUDING REMARKS	55
PAR	RT 3: FIXED-EFFECT VERSUS RANDOM-EFFECTS MODELS	
10	OVERVIEW	59
10	Introduction	59
	Nomenclature	60
	Nomenciature	00
11	FIXED-EFFECT MODEL	61
	Introduction	61
	The true effect size	61
	Impact of sampling error	61
	Performing a fixed-effect meta-analysis	63
	Summary points	64

Contents	vii

12	RANDOM-EFFECTS MODEL	65
	Introduction	65
	The true effect sizes	65
	Impact of sampling error	66
	Performing a random-effects meta-analysis	68
	Summary points	70
13	FIXED-EFFECT VERSUS RANDOM-EFFECTS MODELS	71
	Introduction	71
	Definition of a summary effect	71
	Estimating the summary effect	72
	Extreme effect size in a large study or a small study	73
	Confidence interval	73
	The null hypothesis	76
	Which model should we use?	76
	Model should not be based on the test for heterogeneity	78
	Concluding remarks	79
	Summary points	79
14	WORKED EXAMPLES (PART 1)	81
	Introduction	81
	Worked example for continuous data (Part 1)	81
	Worked example for binary data (Part 1)	85
	Worked example for correlational data (Part 1)	90
	Summary points	94
PAR	RT 4: HETEROGENEITY	
15	OVERVIEW	97
	Introduction	97
	Nomenclature	98
	Worked examples	98
16	IDENTIFYING AND QUANTIFYING HETEROGENEITY	99
	Introduction	99
	Isolating the variation in true effects	99
	Computing Q	101
	Estimating τ^2	106
	The I^2 statistic	109
	Comparing the measures of heterogeneity	111
	Confidence intervals for τ^2	114
	Confidence intervals (or uncertainty intervals) for I^2	115
	Summary points	116

viii Contents

17	PREDICTION INTERVALS Introduction	119 119
	Prediction intervals in primary studies	119
	Prediction intervals in meta-analysis	121
	Confidence intervals and prediction intervals	123
	Comparing the confidence interval with the prediction interval	123
	Summary points	125
18	WORKED EXAMPLES (PART 2)	127
	Introduction	127
	Worked example for continuous data (Part 2)	127
	Worked example for binary data (Part 2)	131
	Worked example for correlational data (Part 2)	134
	Summary points	138
19	AN INTUITIVE LOOK AT HETEROGENEITY	139
	Introduction	139
	Motivating example	140
	The Q -value and the p -value do not tell us how much the effect size varies	141
	The confidence interval does not tell us how much the effect size varies	142
	The I^2 statistic does not tell us how much the effect size varies	142
	What I^2 tells us	142
	The I^2 index vs. the prediction interval	145
	The prediction interval	145
	Prediction interval is clear, concise, and relevant	147
	Computing the prediction interval	147
	How to use I^2	149
	How to explain heterogeneity	149
	How much does the effect size vary across studies?	150
	Caveats	150
	Conclusion	150
	Further reading	151
	Summary points	151
	The meaning of I^2 in Figure 19.2	151
20	CLASSIFYING HETEROGENEITY AS LOW, MODERATE, OR HIGH	155
	Introduction	155
	Interest should generally focus on an index of absolute heterogeneity	155
	The classifications lead themselves to mistakes of interpretation	158
	Classifications focus attention in the wrong direction	158
	Summary points	158

Contents	ix

PAR	T 5: EXPLAINING HETEROGENEITY	
PAR ² 21 22	SUBGROUP ANALYSES Introduction Fixed-effect model within subgroups Computational models Random effects with separate estimates of τ^2 Random effects with pooled estimate of τ^2 The proportion of variance explained Mixed-effects model Obtaining an overall effect in the presence of subgroups Summary points META-REGRESSION	161 161 163 172 174 181 189 192 193 195
	Introduction Fixed-effect model Fixed or random effects for unexplained heterogeneity Random-effects model Summary points	197 198 203 206 212
23	NOTES ON SUBGROUP ANALYSES AND META-REGRESSION Introduction Computational model Multiple comparisons Software Analyses of subgroups and regression analyses are observational Statistical power for subgroup analyses and meta-regression Summary points	213 213 213 216 216 217 218 219
PAR	T 6: PUTTING IT ALL IN CONTEXT	
24	LOOKING AT THE WHOLE PICTURE Introduction Methylphenidate for adults with ADHD Impact of GLP-1 mimetics on blood pressure Augmenting clozapine with a second antipsychotic Conclusions Caveats Summary points	223 226 228 228 231 231 232
25	LIMITATIONS OF THE RANDOM-EFFECTS MODEL Introduction Assumptions of the random-effects model	233 233 234

x Contents

	A textbook case When studies are pulled from the literature A useful fiction Transparency A narrowly defined universe Two important caveats In context Extreme cases Summary points	234 235 237 238 238 239 239 240 241
26	KNAPP-HARTUNG ADJUSTMENT Introduction Adjustment is rarely employed in simple analyses Adjusting the standard error The Knapp-Hartung adjustment for other effect size indices t distribution vs. Z distribution Limitations of the Knapp-Hartung adjustment Summary points	243 243 244 246 247 248 249
PAR	T 7: COMPLEX DATA STRUCTURES	
27	OVERVIEW	253
	INDEDENDENT CURCOCURC WITHIN A CTURY	255
28	INDEPENDENT SUBGROUPS WITHIN A STUDY Introduction Combining across subgroups Comparing subgroups Summary points	255 255 255 260 260
29	Introduction Combining across subgroups Comparing subgroups	255 255 260
	Introduction Combining across subgroups Comparing subgroups Summary points MULTIPLE OUTCOMES OR TIME-POINTS WITHIN A STUDY Introduction Combining across outcomes or time-points Comparing outcomes or time-points within a study	255 255 260 260 263 263 264 270

PAR	RT 8: OTHER ISSUES	
32	OVERVIEW	287
33	VOTE COUNTING – A NEW NAME FOR AN OLD PROBLEM	289
	Introduction	289
	Why vote counting is wrong	290
	Vote counting is a pervasive problem	291
	Summary points	293
34	POWER ANALYSIS FOR META-ANALYSIS	295
	Introduction	295
	A conceptual approach	295
	In context	299
	When to use power analysis	300
	Planning for precision rather than for power	301
	Power analysis in primary studies	301
	Power analysis for meta-analysis	304
	Power analysis for a test of homogeneity	309
	Summary points	312
35	PUBLICATION BIAS	313
	Introduction	313
	The problem of missing studies	314
	Methods for addressing bias	316
	Illustrative example	317
	The model	317
	Getting a sense of the data	318
	Is there evidence of any bias?	320
	How much of an impact might the bias have?	320
	Summary of the findings for the illustrative example	324
	Conflating bias with the small-study effect	325
	Using logic to disentangle bias from small-study effects	326
	These methods do not give us the 'correct' effect size	327
	Some important caveats	327
	Procedures do not apply to studies of prevalence	328
	The model for publication bias is simplistic	328
	Concluding remarks	329
	Putting it all together	330
	Summary points	330
PAR	RT 9: ISSUES RELATED TO EFFECT SIZE	
36	OVERVIEW	335

xii Contents

37	EFFECT SIZES RATHER THAN p-VALUES	337
	Introduction	337
	Relationship between <i>p</i> -values and effect sizes	337
	The distinction is important	339
	The <i>p</i> -value is often misinterpreted	340
	Narrative reviews vs. meta-analyses	341
	Summary points	342
38	SIMPSON'S PARADOX	343
	Introduction	343
	Circumcision and risk of HIV infection	343
	An example of the paradox	345
	Summary points	348
39	GENERALITY OF THE BASIC INVERSE-VARIANCE METHOD	349
	Introduction	349
	Other effect sizes	350
	Other methods for estimating effect sizes	353
	Individual participant data meta-analyses	354
	Bayesian approaches	355
	Summary points	357
PAR	T 10: FURTHER METHODS	
40	OVERVIEW	361
41	META-ANALYSIS METHODS BASED ON DIRECTION AND p-VALUES	363
	Introduction	363
	Vote counting	363
	The sign test	363
	Combining <i>p</i> -values	364
	Summary points	368
42	FURTHER METHODS FOR DICHOTOMOUS DATA	369
	Introduction	369
	Mantel-Haenszel method	369
	One-step (Peto) formula for odds ratio	373
	Summary points	376
43	PSYCHOMETRIC META-ANALYSIS	377
	Introduction	377
	The attenuating effects of artifacts	378
	Meta-analysis methods	380
	Example of psychometric meta-analysis	381
	Comparison of artifact correction with meta-regression	384

Contents	xiii

	Sources of information about artifact values	384
	How heterogeneity is assessed	385
	Reporting in psychometric meta-analysis	386
	Concluding remarks	386
	Summary points	387
PAR	T 11: META-ANALYSIS IN CONTEXT	
44	OVERVIEW	391
45	WHEN DOES IT MAKE SENSE TO PERFORM A META-ANALYSIS?	393
	Introduction	393
	Are the studies similar enough to combine?	394
	Can I combine studies with different designs?	395
	How many studies are enough to carry out a meta-analysis?	399
	Summary points	400
46	REPORTING THE RESULTS OF A META-ANALYSIS	401
	Introduction	401
	The computational model	402
	Forest plots	402
	Sensitivity analysis	404
	Summary points	405
47	CUMULATIVE META-ANALYSIS	407
	Introduction	407
	Why perform a cumulative meta-analysis?	409
	Summary points	412
48	CRITICISMS OF META-ANALYSIS	413
	Introduction	413
	One number cannot summarize a research field	414
	The file drawer problem invalidates meta-analysis	414
	Mixing apples and oranges	415
	Garbage in, garbage out	416
	Important studies are ignored	417
	Meta-analysis can disagree with randomized trials	417
	Meta-analyses are performed poorly	420
	Is a narrative review better?	420
	Concluding remarks	422
	Summary points	422
49	COMPREHENSIVE META-ANALYSIS SOFTWARE	425
	Introduction	425
	Features in CMA	426

xiv Contents

	Teaching elements	427
	Documentation	427
	Availability	427
	Acknowledgments	427
	Motivating example	428
	Data entry	428
	Basic analysis	429
	What is the <i>average</i> effect size?	430
	How much does the effect size vary?	430
	Plot showing distribution of effects	431
	High-resolution plot	432
	Subgroup analysis	433
	Meta-regression	435
	Publication bias	438
	Explaining results	439
	Explaining results	
50	HOW TO EXPLAIN THE RESULTS OF AN ANALYSIS	443
	Introduction	443
	The overview	444
	The mean effect size	444
	Variation in effect size	444
	Notations	444
	Impact of resistance exercise on pain	445
	Correlation between letter knowledge and word recognition	450
	Statins for prevention of cardiovascular events	455
	Bupropion for smoking cessation	460
	Mortality following mitral-valve procedures in elderly patients	465
DΛR	T 12: RESOURCES	
51	SOFTWARE FOR META-ANALYSIS	471
	Comprehensive meta-analysis	471
	Metafor	471
	Stata	472
	Revman	472
52	WEB SITES, SOCIETIES, JOURNALS, AND BOOKS	473
	Web sites	473
	Professional societies	476
	Journals	476
	Special issues dedicated to meta-analysis	477
	Books on systematic review methods and meta-analysis	477
REI	FERENCES	479
INDEX		491
TINT	/L/1	サフェ